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The 2-D axisymmetric (r-z) Code Hall2De

• Began development at JPL in 2008

• Discretization of all conservation laws on a magnetic field-aligned mesh 

• Two components of the electron current density field accounted for in Ohm’s law

• No statistical noise in the numerical solution of the heavy-species conservation laws

• Multiple ion populations allowed

• Large computational domain, extending several times the thruster channel length

Magnetic field streamlines 6 kW Lab Hall thruster Hall2De computational mesh Ion density line contours
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Summary
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• Can a first-principles model for the anomalous transport 
in electrons in Hall thrusters be successfully implemented 
in a fluid code?

• Can a fluid code predict low frequency dynamics (i.e., 
breathing mode oscillations)? How sensitive these 
oscillations are to models (i.e., wall losses, anomalous 
transport, thermal conductivity)?
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Closure of Hall2De equations requires 
anomalous collision frequency
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Magnetic field streamline (constant )

Line of constant electron temperature

Magnetic field streamline (constant )

Line of constant electron temperature
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Major assumptions of first-principles 
model
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• Model tracks “wave action” as representative quantity of wave magnitude

• Maximum wave action established by saturation value

• Relationship between wave action and anomalous collision frequency is non-linear in region where 
electrons are not Maxwellian (Fig. 1)

• Floor value of anomalous collision frequency assumed in non-Maxwellian regions: minimum 
anomalous collision frequency for which electron drift velocity < electron thermal speed (Fig. 2)

Fig. 1: For Ke<< 1, electrons are not 
Maxwellian

Fig. 2: Anomalous collision frequency 
predicted by first principles model

Ke<< 1
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Can the first-principles model be applied 
successfully to multiple thrusters?
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H6MS comparison 
with experiments

H6US comparison 
with experiments

Lopez Ortega et al., “Application of a first-principles anomalous transport model for electrons to multiple Hall thrusters and operating conditions”, JPC 2018

Lopez Ortega et al., “A first-principles model based on saturation of the electron cyclotron drift instability for electron transport in hydrodynamics simulations of Hall thruster 

plasmas”, IEPC 2017
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Can a fluid code capture low frequency 
oscillations? 
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• We use a 1-D version of Hall2De to gain insight on low frequency oscillations

• Linearized system of equations using mass conservation of ions and neutrals produces criterion for 
positive growth rate

𝛾 =
1

2

𝑢𝑖
𝑛𝑖

𝜕𝑛𝑖
𝜕𝑥

+
𝑢𝑛
𝑛𝑛

𝜕𝑛𝑛
𝜕𝑥

−
Γ𝑖𝑛𝑖
𝑛𝑛

Growth
rate

Always < 0

𝑢𝑖 = 0
𝜕𝑛𝑖
𝜕𝑥

= 0

𝛾 can be >0

𝑛𝑖

𝑢𝑖

𝑢𝑖
𝑛𝑖

𝜕𝑛𝑖
𝜕𝑥

= −
𝜕𝑢𝑖
𝜕𝑥

− Γ𝑖 + 𝑐𝑒𝜎(𝑇𝑒)𝑛𝑛

convection < ionization

Wall loss 
frequency 
for ions

Neutral 
density

Ion 
density

Neutral 
velocity

Ion 
velocity

Must be 
positive for γ>0

x
Assuming oscillations are small, the 0-th order 
steady-state solution for ion conservation can be 
written as:
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Can a fluid code capture low frequency oscillations? 
What drives them?
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• Presence of oscillations is very sensitive to small changes in models that produce 
reasonable plasma solutions:
• Wall losses
• Thermal conductivity
• Collision cross sections
• Ionization cross sections
• Anomalous collision frequency

Example: anomalous collision frequency

𝑢𝑖 = 0

𝜕𝑛𝑖
𝜕𝑥

= 0
𝜕𝑛𝑖
𝜕𝑥

= 0
𝑢𝑖 = 0
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Can a fluid code capture low frequency oscillations? 
What drives them?
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• Presence of oscillations is very sensitive to small changes in models that produce 
reasonable plasma solutions:
• Wall losses
• Thermal conductivity
• Collision cross sections
• Ionization cross sections
• Anomalous collision frequency

Example: anomalous collision frequency

𝑢𝑖 = 0

𝜕𝑛𝑖
𝜕𝑥

= 0
𝜕𝑛𝑖
𝜕𝑥

= 0
𝑢𝑖 = 0
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Major assumptions of first-principles model
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𝜕𝑁𝑘
𝜕𝑡

+ 𝐮𝑖 ∙ 𝛻𝑁𝑘 = 2𝜔𝑖,𝑘,𝑙𝑖𝑛𝑒𝑎𝑟 1 −
𝑁𝑘

𝑁𝑘,𝑠𝑎𝑡

Includes electron drift + Landau damping

𝑁𝑘,𝑠𝑎𝑡 =
𝑛0𝑇𝑒

4𝑛𝑐𝑠 1 + 𝑘2𝜆𝐷𝑒
2

Limits plasma potential oscillations not to exceed 𝑇𝑒

Number of discrete 
wavenumbers

𝜈𝑎 =
2𝑒

𝑁𝑚𝑒𝑛0 𝐮𝑒 − 𝐮𝑖
෍

𝑘

𝑘𝑁𝑘𝜔𝑖𝑒,𝑘,𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

Includes electron drift

ee
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𝐾𝑒 ≫ 1𝜔𝑖𝑒,𝑘,𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟=𝜔𝑖𝑒,𝑘,𝑙𝑖𝑛𝑒𝑎𝑟

𝐾𝑒 ≪ 1𝜔𝑖𝑒,𝑘,𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 ??
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Can a fluid code capture low frequency 
oscillations? 
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Linearized system with analytical solution: ion density + neutral density equations in 1-D

𝐷𝑛𝑖
𝐷𝑡

= −𝑛𝑖
𝜕𝑢𝑖
𝜕𝑥

+ 𝑘𝑛𝑖𝑛𝑛 − Γ𝑖𝑛𝑖

ionization wall losses

𝐷𝑛𝑛
𝐷𝑡

= −𝑘𝑛𝑖𝑛𝑛 + Γ𝑖𝑛𝑖

steady state

linearized system

𝑢𝑖
𝜕𝑛𝑖
𝜕𝑥

= −𝑛𝑖
𝜕𝑢𝑖
𝜕𝑥

+ 𝑘𝑛𝑖𝑛𝑛 − Γ𝑖𝑛𝑖

𝑢𝑛
𝜕𝑛𝑛
𝜕𝑥

= −𝑘𝑛𝑖𝑛𝑛 + Γ𝑖𝑛𝑖

𝐷

𝐷𝑡

𝑛′𝑖
𝑛′𝑛

=
−
𝜕𝑢𝑖
𝜕𝑥

+ 𝑘𝑛𝑛 − Γ𝑖 𝑘𝑛𝑖

−𝑘𝑛𝑛 + Γ𝑖 −𝑘𝑛𝑖

𝑛′𝑖
𝑛′𝑛

= 0

𝛾 =
1

2

𝑢𝑖
𝑛𝑖

𝜕𝑛𝑖
𝜕𝑥

+
𝑢𝑛
𝑛𝑛

𝜕𝑛𝑛
𝜕𝑥

−
Γ𝑖𝑛𝑖
𝑛𝑛

𝜔2 = 𝑘𝑛𝑖
𝜕𝑢𝑖
𝜕𝑥

− 𝛾2

Growth
rate

Frequency

< 0

𝑢𝑖 = 0
𝜕𝑛𝑖
𝜕𝑥

= 0

𝛾 can be >0

𝑛𝑖

𝑢𝑖

𝑢𝑖
𝑛𝑖

𝜕𝑛𝑖
𝜕𝑥

= −
𝜕𝑢𝑖
𝜕𝑥

− Γ𝑖 + 𝑘𝑛𝑛

convection < ionization


